If it's not what You are looking for type in the equation solver your own equation and let us solve it.
6x^2+14x-6=0
a = 6; b = 14; c = -6;
Δ = b2-4ac
Δ = 142-4·6·(-6)
Δ = 340
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$
The end solution:
$\sqrt{\Delta}=\sqrt{340}=\sqrt{4*85}=\sqrt{4}*\sqrt{85}=2\sqrt{85}$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(14)-2\sqrt{85}}{2*6}=\frac{-14-2\sqrt{85}}{12} $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(14)+2\sqrt{85}}{2*6}=\frac{-14+2\sqrt{85}}{12} $
| 2m+11=17-2m | | 5+4x4=4+4x3 | | 5+(4x4)=4+(4x3) | | 13v+2=30 | | 2(2x-4)+(6-3x)=27 | | 65-5x=x | | 5.5=(n+1)-2 | | 68-5=y | | 12-2y=11 | | 56.62=1/3*3.14*9h | | -14/25=4/5t | | y/3-y/4=1/6 | | 3x+15/7+x+36/5=15 | | (4x+5)+(x-25)=180 | | 56.62=1/3*3.14*9*h | | 3^(x+5)=8^x | | x=50-(1*((x-(-10))/5)) | | Y=3x/(x^2+9) | | 5x-9/4=9 | | 5x-9/4=2 | | 7x–4=31, | | 2.2=x-5.3 | | 30x-18=40x-78 | | (t^2+2)-65t(13t^2+95)5t=0 | | 17x+2=22-3x | | 5x(2)+7=25 | | 60=0.5x-x | | (4(r))-18=20+(1/5(r)) | | 4(r)-18=20+1/5(r) | | 3(b+2)=b-5 | | 5(x+1)=6x+4 | | y/7+17=20 |